Additive tructure of non-monogenic imple t cubic fiald

Magdaléna Tinková

Czech Technical University in Prague

Joint work with Daniel Gil-Muñoz.

pril 18, 2023

伊 ▶ (三)

 QQ

- \bullet K algebraic number field
- \bullet d degree of K over $\mathbb Q$
- \bullet $\mathcal{O}_{\mathcal{K}}$ is the ring of algebraic integers in \mathcal{K}

Definition

K is monogenic if $O_K = \mathbb{Z}[\]$ for some $2K$, i.e., every algebraic integer $2 O_K$ can be expressed as

$$
= a_0 + a_1 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2
$$

where $a_i \, 2 \, \mathbb{Z}$ for all 0 i d 1.

メロトメ 御 トメミトメミト ジミー・マー

Example

Example

 \overline{K} real quadratic field $\overline{K} = \mathbb{Q}(\overline{K})$ D) where $D > 1$ is square-free

$$
O_K = \begin{pmatrix} \mathbb{Z} & \mathbb{D}_{\overline{D}} & \text{if } D & 2/3 \pmod{4} \\ \mathbb{Z} & \frac{1+\mathbb{D}_{\overline{D}}}{2} & \text{if } D & 1 \pmod{4} \end{pmatrix}
$$

They are always monogenic.

Example

$$
K = \mathbb{Q}(\)
$$
 where is a root of x^3 x^2 2x 8 is not monogenic

伊 ▶ ヨ ヨ ▶ ヨ

∍

The imple t cubic field

- o introduced by Shanks (1974)
- $K = \mathbb{Q}(\)$ where

The imple t cubic field

- introduced by Shanks (1974)
- $K = \mathbb{Q}(\)$ where is a root of x^3 ax^2 $(a+3)x$ 1 with $a \, 2 \, \mathbb{Z}$, a α 1
- o they are Galois extensions
- \bullet $\mathcal{O}_K = \mathbb{Z}$ | for infinitely many cases of a

Example

 $O_K = \mathbb{Z}[\]$ if $a^2 + 3a + 9$ is square-free

K 何 ▶ K 手 ▶ K 手 ▶

 Ω

The imple t cubic field

- introduced by Shanks (1974)
- $K = \mathbb{Q}(\)$ where is a root of x^3 ax^2 $(a+3)x$ 1 with $a \, 2 \, \mathbb{Z}$, a α 1
- o they are Galois extensions
- \bullet $\mathcal{O}_K = \mathbb{Z}[\]$ for infinitely many cases of a

Example

- $O_K = \mathbb{Z}[\]$ if $a^2 + 3a + 9$ is square-free
- if $a = 0$, then $a^2 + 3a + 9 = 9$ is not square-free but still $O_{\mathcal{K}} = \mathbb{Z} \lceil \cdot \rceil$

K 何 ▶ K 手 ▶ K 手 ▶

[Number elds and their monogenity](#page-1-0) [Indecomposable integers](#page-15-0)

Monoganic impla t cubic fiald

let c be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

メロメ メタメ メミメ メミメー

 \equiv

 Ω

Let K

$$
B_p(k; l) = 1; \quad \frac{k+l+2}{p} \quad \text{where } p \text{ is a prime and } 1 \quad k; l \quad p \quad 1
$$

$$
B_p(k; l) = 1; \quad \frac{k+l+2}{p} \quad \text{where } p \text{ is a prime and } 1 \quad k; l \quad p \quad 1
$$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_p(k; l)$ if and only if $p = 3$ and $(k; l) = (1; 1)$, or 1 (mod 6) and $(k; l)$ is one of two concrete pairs of $(k_1; l_1)$ and $(k_2; l_2)$ where values of k_i and l_i depend only on p .

伊 ▶ (三)

K ロ > K @ > K 할 > K 할 > 1 할 | ⊙ Q Q ^

$$
B_p(k; l) = 1; \quad \frac{k+l+2}{p} \quad \text{where } p \text{ is a prime and } 1 \quad k; l \quad p \quad 1
$$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_p(k; l)$ if and only if $p = 3$ and $(k; l) = (1; 1)$, or 1 (mod 6) and $(k; l)$ is one of two concrete pairs of $(k_1; l_1)$ and $(k_2; l_2)$ where values of k_i and l_i depend only on p .

- $\rho = 3$ and $\rho = 1$ (mod 6) follows from the solvability of the equation $a^2 + 3a + 9$ 0 (mod p^2)
- solutions a_1 and a_2 of $a^2 + 3a + 9$ 0 (mod p^2) produce concrete values of $(k_1; l_1)$ and $(k_2; l_2)$ for which $\frac{k_i + l_i ~+~^2}{\rho}$ is an algebraic integer

→ イラン イヨン イラン

- \bullet K totally real number field
- O_K^+ set of totally positive elements $-$ 2 O_K , i.e., all conjugates of are positive

(伊) (手)

一本 国 下

 2990

э

- \bullet K totally real number field
- O_K^+ set of totally positive elements $-$ 2 O_K , i.e., all conjugates of are positive

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

as ult on indecompo able integer

We know the precise structure of indecomposable integers in \sim quadratic fields $\mathbb{Q}(\ulcorner\overline{D})$, where they can be described using the continued fraction of $\breve{\rho}$ D or $\frac{\beta}{D}$ 1 $\frac{2}{2}$ (Perron, 1913; Dress, Scharlau, 1982).

つくい

as ult on indecompo able integer

- We know the precise structure of indecomposable integers in \sim quadratic fields $\mathbb{Q}(\ulcorner\overline{D})$, where they can be described using the continued fraction of $\breve{\rho}$ D or $\frac{\beta}{D}$ 1 $\frac{2}{2}$ (Perron, 1913; Dress, Scharlau, 1982).
- \bullet We also know their structure for several families of cubic fields (Kala, T., 2022; T., 2023+).
- . some partial results for biquadratic fields (Čech, Lachman, Svoboda, T., Zemková, 2019; Krásenský, T., Zemková, 2020)

つくい

Theorem (Kala, T., 2022)

Let K be the simple t ubilitield with a $\overline{1}$ u h that $O_K = \mathbb{Z}$ []. The element 1, 1 + $+$ ², and

$$
(v; w) = v \t w + (v + 1)^2
$$

where 0 v a and $v(a + 2) + 1$ w $(v + 1)(a + 1)$ are, u to multi li ation by totally o itive unit, all the inde om o able integer in $\mathbb{Q}(\)$.

Number fields and their monogenity
Indecomposable integers

Univer al quadratic form

Quadratic form Q(

Pythagora numbar

\n- let *O* be a commutative ring
\n- $$
\overrightarrow{P}
$$
 \overrightarrow{P} \overrightarrow{P} <

0G40g0G0g0GT19701Tf2.8830Td-4310.9091Tf7.87912.10g0.240.0-l9

イロメ イ部メ イ君メ イ君メー 君

 \leftarrow \Box \rightarrow

Than you for your attention.

す口下 M. Tinková Additive structure of non-monogenic simplest cubic fields

④ イライミン イラ

 \sim э