Additive tructure of non-monogenic implet cubic field

Magdaléna Tinková

Czech Technical University in Prague

Joint work with Daniel Gil-Muñoz.

pril 18, 2023

- K algebraic number field
- d degree of K over \mathbb{Q}
- O_K is the ring of algebraic integers in K

Definition

K is monogenic if $O_K = \mathbb{Z}[$] for some 2 K, i.e., every algebraic integer 2 O_K can be expressed as

$$= a_0 + a_1 + a_2^2 + a_{d-1}^{d-1}$$

where $a_i \ 2 \mathbb{Z}$ for all $0 \quad i \quad d = 1$.

<ロ> <部> <き> <き> <き> <き> <</p>

Exampla

Example

K real quadratic field) $K = \mathbb{Q}(\overline{D})$ where D > 1 is square-free

$$\mathcal{D}_{\mathcal{K}} = \begin{pmatrix} \mathbb{Z} & \stackrel{\mathcal{D}}{\overline{D}} & \text{if } D & 2/3 \pmod{4} \end{pmatrix}$$
$$\mathbb{Z} & \frac{1+\stackrel{\mathcal{D}}{\overline{D}}}{2} & \text{if } D & 1 \pmod{4} \end{pmatrix}$$

/ They are always monogenic.

Example
$$\mathcal{K} = \mathbb{Q}(\)$$
 where is a root of $x^3 \quad x^2 \quad 2x \quad 8$ is not monogenic

Tha impla t cubic fiald

- introduced by Shanks (1974)
- $\mathcal{K} = \mathbb{Q}()$ where

Tha implat cubic fiald

- introduced by Shanks (1974)
- $K = \mathbb{Q}()$ where is a root of $x^3 = ax^2 = (a+3)x = 1$ with $a \ge \mathbb{Z}$, a = 1
- they are Galois extensions
- $O_K = \mathbb{Z}[$] for infinitely many cases of a

Example

• $O_K = \mathbb{Z}[$] if $a^2 + 3a + 9$ is square-free

Tha implat cubic fiald

- introduced by Shanks (1974)
- $K = \mathbb{Q}()$ where is a root of $x^3 = ax^2 = (a+3)x = 1$ with $a \ge \mathbb{Z}$, a = 1
- they are Galois extensions
- $O_K = \mathbb{Z}[$] for infinitely many cases of a

Example

- $O_K = \mathbb{Z}[$] if $a^2 + 3a + 9$ is square-free
- if a = 0, then $a^2 + 3a + 9 = 9$ is not square-free but still $O_K = \mathbb{Z}[$

Number fields and their monogenity Indecomposable integers

Monoganic impla t cubic fiald

let \mathfrak{c} be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

・ロト ・四ト ・ヨト ・ヨト

3

Let K

$$B_p(k; l) = 1; ; \frac{k+l+2}{p}$$
 where p is a prime and 1 $k; l = p$ 1

$$B_p(k; I) = 1; ; \frac{k+I+2}{p}$$
 where p is a prime and 1 $k; I = p$ 1

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_p(k; l)$ if and only if p = 3 and (k; l) = (1; 1), or $p = 1 \pmod{6}$ and (k; l) is one of two concrete pairs of $(k_1; l_1)$ and $(k_2; l_2)$ where values of k_i and l_i depend only on p.

$$B_p(k; I) = 1; ; \frac{k+I+2}{p}$$
 where p is a prime and 1 $k; I = p$ 1

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_p(k; l)$ if and only if p = 3 and (k; l) = (1; 1), or $p = 1 \pmod{6}$ and (k; l) is one of two concrete pairs of $(k_1; l_1)$ and $(k_2; l_2)$ where values of k_i and l_i depend only on p.

- p = 3 and $p = 1 \pmod{6}$ follows from the solvability of the equation $a^2 + 3a + 9 = 0 \pmod{p^2}$
- solutions a_1 and a_2 of $a^2 + 3a + 9 = 0 \pmod{p^2}$ produce concrete values of $(k_1; l_1)$ and $(k_2; l_2)$ for which $\frac{k_1 + l_1 + 2}{p}$ is an algebraic integer

- K totally real number field
- O_K^+ set of totally positive elements $2 O_K$, i.e., all conjugates of are positive

- K totally real number field
- O_K^+ set of totally positive elements $2 O_K$, i.e., all conjugates of are positive

Se ult on indecompo able integer

• We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\stackrel{\frown}{D})$, where they can be described using the continued fraction of $\stackrel{\frown}{D}$ or $\frac{\stackrel{\frown}{D}}{\frac{D}{2}}$ (Perron, 1913; Dress, Scharlau, 1982).

・ロト・日本・日本・日本・日本・日本

Se ult on indecompo able integer

- We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\overline{D})$, where they can be described using the continued fraction of \overline{D} or $\frac{\overline{D}}{2}$ (Perron, 1913; Dress, Scharlau, 1982).
- We also know their structure for several families of cubic fields (Kala, T., 2022; T., 2023+).
- some partial results for biquadratic fields (Čech, Lachman, Svoboda, T., Zemková, 2019; Krásensk, T., Zemková, 2020)

Theorem (Kala, T., 2022)

Let K be the im let ubi field with a 1 u h that $O_K = \mathbb{Z}[$]. The element 1, 1 + + ², and

$$(V, W) = V W + (V + 1)^{2}$$

where $0 \quad v \quad a \text{ and } v(a+2) + 1 \quad w \quad (v+1)(a+1) \text{ are, } u \text{ to multi li ation by totally o itive unit , all the inde om o able integer in <math>\mathbb{Q}()$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Univar al quadratic form

Quadratic form Q(

Pythagora numbar

- let *O* be a commutative ring • $O^2 = \bigcap_{i=1}^{n} 2_i; i 2 O; n 2 \mathbb{N}$ • $P_m O^2 = \bigcap_{i=1}^{n} 2_i; i 2 O$
- 0G40g0G0g0GT19701Tf2.8830Td-4310.9091Tf7.87912.10g0.240.0-l9

< □ >

Than you for your attention.

< E